Multi-view Laplacian Support Vector Machines

نویسنده

  • Shiliang Sun
چکیده

We propose a new approach, multi-view Laplacian support vector machines (SVMs), for semi-supervised learning under the multiview scenario. It integrates manifold regularization and multi-view regularization into the usual formulation of SVMs and is a natural extension of SVMs from supervised learning to multi-view semi-supervised learning. The function optimization problem in a reproducing kernel Hilbert space is converted to an optimization in a finite-dimensional Euclidean space. After providing a theoretical bound for the generalization performance of the proposed method, we further give a formulation of the empirical Rademacher complexity which affects the bound significantly. From this bound and the empirical Rademacher complexity, we can gain insights into the roles played by different regularization terms to the generalization performance. Experimental results on synthetic and realworld data sets are presented, which validate the effectiveness of the proposed multi-view Laplacian SVMs approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-view twin support vector machines

Twin support vector machines are a recently proposed learning method for binary classification. They learn two hyperplanes rather than one as in conventional support vector machines and often bring performance improvements. Multiview learning is concerned about learning from multiple distinct feature sets, which aims to exploit distinct views to improve generalization performance. In this paper...

متن کامل

Feature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine

Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods.  In filter methods, features subsets are selected due to some measu...

متن کامل

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011